Tensor Decompositions: A New Concept in Brain Data Analysis?
نویسنده
چکیده
Matrix factorizations and their extensions to tensor factorizations and decompositions have become prominent techniques for linear and multilinear blind source separation (BSS), especially multiway Independent Component Analysis (ICA), Nonnegative Matrix and Tensor Factorization (NMF/NTF), Smooth Component Analysis (SmoCA) and Sparse Component Analysis (SCA). Moreover, tensor decompositions have many other potential applications beyond multilinear BSS, especially feature extraction, classification, dimensionality reduction and multiway clustering. In this paper, we briefly overview new and emerging models and approaches for tensor decompositions in applications to group and linked multiway BSS/ICA, feature extraction, classification and Multiway Partial Least Squares (MPLS) regression problems.
منابع مشابه
Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems
Tensor decompositions and tensor networks are emerging and promising tools for data analysis and data mining. In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors...
متن کاملMACH: Fast Randomized Tensor Decompositions
Tensors naturally model many real world processes which generate multi-aspect data. Such processes appear in many different research disciplines, e.g, chemometrics, computer vision, psychometrics and neuroimaging analysis. Tensor decompositions such as the Tucker decomposition are used to analyze multi-aspect data and extract latent factors, which capture the multilinear data structure. Such de...
متن کاملFrom Tensor to Coupled Matrix/Tensor Decomposition
Decompositions of higher-order tensors are becoming more and more important in signal processing, data analysis, machine learning, scientific computing, optimization and many other fields. A new trend is the study of coupled matrix/tensor decompositions (i.e., decompositions of multiple matrices and/or tensors that are linked in one or several ways). Applications can be found in various fields ...
متن کاملTensor Decompositions and Sparse Log-linear Models.
Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these noti...
متن کاملTensor decompositions for feature extraction and classification of high dimensional datasets
Feature extraction and selection are key factors in model reduction, classification and pattern recognition problems. This is especially important for input data with large dimensions such as brain recording or multiview images, where appropriate feature extraction is a prerequisite to classification. To ensure that the reduced dataset contains maximum information about input data we propose al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1305.0395 شماره
صفحات -
تاریخ انتشار 2013